High temperature resistant cables are used in various industrial sectors, such as:

- **Medical technology**
 - Medical input leads
 - Engine and turbine manufacture
 - Research, universities etc.

- **Automation technology**
 - Wired modules
 - Industrial and system solutions

- **Power engineering**
 - Electrical energy production and transmission
 - Electrical energy distribution

- **Aerospace technology**
 - Satellite and auxiliary equipment

- **Automotive engineering**
 - Airbag systems

- **Plant and process engineering**
 - Technical and system solutions

- **Building services engineering**
 - Laboratory equipment

- **Railway engineering**
 - Railcar systems

- **Automation Engineering**
 - Power and control electronics

- **Medical technology**
 - Medical输入 leads

- **Mechanical engineering**
 - Special foils and cables

- **Thermo & AGL cables**
 - High temperature cables

- **UL & CSA cables**
 - silicone insulated cables
 - fluoropolymer insulated cables

- **Customised cables**
 - sine waves
 - specials

- **Hybrid cables**
 - heat resistant wires

- **Silicone cables**
 - excellent electrical properties

- **Fluoropolymer insulated cables**
 - excellent flexibility

- **Cables made of glass fiber, mica and ceramic-based**
 - exceptional temperature resistance

- **Insulation materials made of glass fiber, mica and ceramic-based**
 - exceptional temperature resistance up to 1,250 °C and boast good mechanical strength as well as electrical performance with the thinnest possible dimensions.

- **Cables based on fluoropolymers are exceptionally well suited to temperatures of up to 260 °C and boast good mechanical strength as well as electrical performance with the thinnest possible dimensions.**

- **Insulation materials made of glass fiber, mica and ceramic-based**
 - exceptional temperature resistance up to 1,250 °C and boast good mechanical strength as well as electrical performance with the thinnest possible dimensions.

- **Insulation materials made of glass fiber, mica and ceramic-based**
 - exceptional temperature resistance up to 1,250 °C and boast good mechanical strength as well as electrical performance with the thinnest possible dimensions.

- **Insulation materials made of glass fiber, mica and ceramic-based**
 - exceptional temperature resistance up to 1,250 °C and boast good mechanical strength as well as electrical performance with the thinnest possible dimensions.

- **Insulation materials made of glass fiber, mica and ceramic-based**
 - exceptional temperature resistance up to 1,250 °C and boast good mechanical strength as well as electrical performance with the thinnest possible dimensions.
HighTemp Solutions · Materials and properties

Chemical Description

Material	Chemical Description	LHTS	D55–D65	>20	>200	>1018	>20	2.0	95	++	–	–	no	2.10–2.30																
Silicone-Rubber (cross-linked by peroxide)	VMQ R	Silicone-Rubber (cross-linked by peroxide)	–190	260	300	310	327	–90	++	++	++	++	++	0.01	D55–D65	>20	>200	++	>1018	>20	2.0	95	++	–	–	no	2.10–2.30			
Polytetrafluorethylene	PTFE	Polytetrafluorethylene	5Y	–190	260	300	310	327	–90	++	++	++	++	++	0.01	D55–D65	>20	>200	++	>1018	>20	2.0	95	++	–	–	no	2.10–2.30		
Ethylen-Polypropylene-Terpolymer	EPDM	Ethylen-Polypropylene-Terpolymer	18Y	–40	90	120	130–150	>135	–40	–	++	+	+	+	1.50	A50–D40	>10	>300	+	>1014	>20	3.0	22–27	–/+	yes	+	yes	1.20–1.40		
Ethylen-Vinyl Acetate-Rubber	EVM	Ethylen-Vinyl Acetate-Rubber	4G	–40	120	150	180	cross-linked	–50	+	+	+	+	+	0.10	>A70	>10	>200	+	1012–1014	>20	4.0–7.0	>20	–/+	yes	+	yes	1.30–1.45		
Thermoplastic Polyolefin Elastomer	TPE-O	Thermoplastic Polyolefin Elastomer	18Y	–40	90	120	130–150	>135	–40	–	++	+	+	+	1.00–2.00	A30–D50	>15	>200	+	>1010	>10	3.0–4.0	22–27	–/+	yes	+	yes	1.10–1.30		
Thermoplastic Polystyrene Elastomer	TPE-S	Thermoplastic Polystyrene Elastomer	17Y	–75	115	125	140–150	>150	–40	+	+	+	+	+	1.00–2.00	A30–D50	>15	>200	+	>1010	>10	3.0–4.0	22–27	–/+	yes	+	yes	1.10–1.30		
Thermoplastic Polyester Elastomer	TPE-E	Thermoplastic Polyester Elastomer	13Y o. 12Y	–70	115	150	160	180–230	–50	++	–	++	+	++	0.60–1.20	D40–D78	>20	>300	++	>109	>10	3.5–5.0	<29	–/+	yes	++	yes	1.00–1.20		
Polypropylene	PP	Polypropylene	9Y	–40	90	110	140	130–145	–40	+	+	+	–/+	0.10	D65–D70	>30	>400	+	>1016	>80	2.3	18	–	yes	++	yes	0.91			
Polyetherimide	PEI	Polyetherimide	N.a.	–40	150	170	190	>220	–25	+	–/+	+	+	+	>0.25	D80–D85	>95	>60	+	>1015	>180	3.2–3.5	>45	+	yes	+	yes	1.27		
Polyvinylidenfluoride	PVDF	Polyvinylidenfluoride	10Y	–100	135	135–145	160	160–190	–65	++	++	++	++	++	0.02	D75–D80	>25	>100	++	>1014	>25	2.0	8.0	>30	++	yes	–	–	no	1.70–1.90
Ethylene-Tetrafluorethylene	ETFE	Ethylene-Tetrafluorethylene	7Y	–100	135	180	200	235–270	–65	++	++	++	++	++	0.02	D70–D75	>25	>150	++	>1015	>30	2.6	>30	++	yes	–	–	no	1.60–1.80	
Tetrafluorethylene-Hexafluorpropylene	FEP	Tetrafluorethylene-Hexafluorpropylene	6Y	–100	205	230	260	265–270	–80	++	++	++	++	++	0.01	D55–D60	>20	>200	+	>1018	>25	2.1	95	++	yes	–	–	no	2.00–2.30	
Tetrafluorethylene-Perfluormethylvinylether	MFA	Tetrafluorethylene-Perfluormethylvinylether	N.a.	–100	230	250	270	280–290	–90	++	++	++	++	++	0.01	D55–D60	>20	>200	+	>1016	>25	2.1	95	++	yes	–	–	no	2.12–2.17	
Polyvinylchloride	PVC	Polyvinylchloride	Y	–40	80	120	140	140–160	–40	–/+	+	–/+	++	–/+	0.40	A50–D50	>10	>200	+	>1010	>20	4.0–5.0	>20	++	no	–	–	no	1.35–1.50	

Designation

- **Continuous Operating Temperature**: from °C to °C
- **Thermal Properties**: °C °C °C °C % A/D (MPa) % Ω x cm kV/mm % O2 g/cm³
- **Resistance**: for 20,000 hrs
- **Melt/Flow Test**: for 3,000 hrs
- **Elongation at break**: %
- **Flammability**: %
- **Density**: %

Additional Information

1) without fire protection agent
2) +2) no2) 1.242)